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We study the influence of composition changes on the glass transition of binary hard disk and hard sphere
mixtures in the framework of mode coupling theory. We derive a general expression for the slope of a glass
transition line. Applied to the binary mixture in the low concentration limits, this method allows a fast
prediction of some properties of the glass transition lines. The glass transition diagram we find for binary hard
disks strongly resembles the random close packing diagram. Compared to three dimensions from previous
studies, the extension of the glass regime due to mixing is much more pronounced in two dimensions where
plasticization only sets in at larger size disparities. For small size disparities we find a stabilization of the glass
phase quadratic in the deviation of the size ratio from unity.
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I. INTRODUCTION

Adding a second component to a one-component liquid
changes its static and dynamical properties. For instance, if
one adds a low concentration of rather small species, deple-
tion forces between the larger particles are induced �1�.
These effective forces are attractive for small separations and
tend to stabilize the liquid phase in addition to influencing
the transport properties �2–4�. Such mixing effects are inter-
esting from a fundamental point of view and also for appli-
cations. It is our main goal to study the influence of mixing
on the glass transition of binary systems with hard core in-
teractions in two and three dimensions. This will be done in
the framework of mode coupling theory �MCT� �5�.

Mixing effects on the MCT glass transition were studied
first by Barrat and Latz �6� for binary soft spheres. However,
the first systematic investigation was performed by Götze
and Voigtmann �7� for binary hard spheres with moderate
size ratios �=Rs /Rb. Rs and Rb are the radii of the small and
big spheres, respectively. For size ratios close to unity, a
slight extension of the glass regime was observed. Larger
size disparities induce a plasticization effect, leading to a
stabilization of the liquid due to mixing. The results qualita-
tively agree with those from dynamic light scattering experi-
ments �8,9� and molecular dynamics simulations �10,11�. In
contrast to this, a recent theory of Juárez-Maldonado and
Medina-Noyola �12� based on the self-consistent generalized
Langevin equation predicts a plasticization effect also for
size ratios close to unity. These authors argued that the data
available from simulations and experiments are not suffi-
ciently accurate to rule out one of the scenarios. Size ratios
far from unity, i.e., ��1, may be problematic. First, the
quality of, e.g., Percus-Yevick �PY� theory used to calculate
the static input for MCT may become less reliable. Second,
phase separation �see discussion in Ref. �13�� and, third, a
sequential arrest of the big and small particles �by a type-A
transition� could occur. The diverging length scale associated
with a type-A transition affects the quality of the MCT ap-
proximations.

The results of Götze and Voigtmann �7� exhibit four mix-
ing effects, two of which were mentioned above. The two
remaining mixing effects are an increase in the plateau val-
ues of the normalized correlation functions for intermediate
times for almost all wave numbers upon increasing the con-
centration of the smaller particles and a slowing down of the
initial part of the relaxation of the big-big correlators toward
these plateaus. Our motivation is twofold. First, we want to
explore whether these effects also exist in a corresponding
two-dimensional �2D� liquid of binary hard disks. A recent
experiment �14� has given evidence for glassy behavior in a
similar two-dimensional liquid including dipolar interac-
tions. Second, we will investigate in more detail the influence
of mixing close to the monodisperse system, i.e., fixing the
packing fraction � at �0

c �the critical packing fraction of the
monodisperse system�, how does a very small perturbation of
the monodisperse system influence the glass transition? The
arbitrary small perturbation can be achieved in three ways,
either by adding a very small concentration of smaller or
bigger species for given arbitrary ��1 or by a slight de-
crease in the diameter of an arbitrary concentration xs of the
smaller particles, accompanied by a slight increase in the
remaining particles, i.e., 1−��1.

The mixing effects in the low concentration limits follow
directly from the slopes ��c�xs ,�� /�xs at xs=0 and xs=1 of
the glass transition lines �GTLs� �c�xs ,�� at fixed �. If
��c�xs ,�� /�xs �xs=0 is positive �negative�, the liquid �glass� is
stabilized. The same is true if ��c�xs ,�� /�xs �xs=1=−��c�1
−xb ,�� /�xb �xb=0 is negative �positive�. xb=1−xs is the big
particle’s concentration. Since the determination of these
slopes from the numerical result for �c�xs ,�� with discretized
values of xs is not precise, particularly for � closer to unity
�cf. the critical lines for �=0.7 and 0.8 of Fig. 1 in Ref. �7��,
we will derive an analytical expression for ��c�xs ,�� /�xs for
arbitrary xs and �. Applied to xs=0 and xs=1, only the glass
transition singularity of the monodisperse system is needed.
The remaining quantities entering the slope at xs=0 and xs
=1 can be determined from a perturbational approach dis-
cussed below. The application for the slope formula will be
done for both hard disks and hard spheres. This allows us to
explore the dimensional dependence �at least for d=2 and
d=3� of the mixing effects in the weak mixing limit.*hajnalda@uni-mainz.de
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II. MODE COUPLING THEORY

We will restrict ourselves to the essential equations to
keep our presentation self-contained. For details, the reader
may consult Ref. �5�. Correlation functions are matrix valued
vectors denoted by bold symbols A, B, etc. Their compo-
nents Ak, Bk being M �M matrices �Ak

���, �Bk
��� �in case of

an M-component fluid� are labeled by subscript Latin indices
�the wave numbers� which can be taken from a discrete or a
continuous set. The elements Ak

��, Bk
�� of these matrices are

indicated by superscript Greek indices; in some cases these
elements shall also be denoted by �A�k

��, �B�k
��. Matrix prod-

ucts are defined componentwise, i.e., C=AB reads Ck
=AkBk for all k. We call A positive �semi�definite �A�0�
and A�0 if this is true for all Ak. 0 denotes the �generalized�
zero matrix. If k is restricted to a finite number of values,
then the standard scalar product of A and B shall be defined
as �A �B�=�k��,�Ak

��Bk
��.

A. General equations

We consider an isotropic and homogeneous classical fluid
consisting of M macroscopic components in d dimensions.
��t� denotes the matrix of time dependent partial autocorre-
lation functions of density fluctuations, 	k

���t� �� ,�
=1, . . . ,M�, at wave number k. We require the normalization
��0�=S, where S denotes the static structure factor matrix
whose elements obey limk→
 Sk

��=x����. Here ��� denotes
the Kronecker delta and x� denotes the particle number con-
centration of component �.

Considering overdamped colloidal dynamics, the
Zwanzig-Mori projection operator formalism yields the
equation of motion,

��̇�t� + S−1��t� + �
0

t

dt�m�t − t���̇�t�� = 0 , �1�

with the memory kernel m�t� describing fluctuating stresses
and playing the role of generalized friction. � is a positive
definite matrix of microscopic relaxation times. Its compo-
nents shall be approximated by �k

��=��� / �k2D�
0x�� where hy-

drodynamic interactions are neglected. D�
0 denotes the short-

time diffusion coefficient of a single particle of the species �
inserted into the fluid. With this, the short-time asymptote of
��t� is given by

��t → 0� = S − �−1t + O�t2� . �2�

Here we restrict ourselves to t�0. MCT approximates m�t�
by a symmetric bilinear functional F of ��t�,

m�t� = F���t�,��t�� . �3�

It is straightforward to generalize the explicit expression for
F of a simple fluid in d dimensions �d�2� presented in Ref.
�15� to multicomponent systems. The result is

Fk
���X,Y� =

d−1

�4��d �
��,��,��,��

�
0




dp�
�k−p�

k+p

dq

� Vk;p,q
��;����,����Xp

����Yq
���� �4�

with the vertices

Vk;p,q
��;����,���� =

n

x�x�

pq

kd+2vkpq
�����vkpq

�����, �5�

where

vkpq
��� =

�k2 + p2 − q2�cp
����� + �k2 − p2 + q2�cq

�����

�4k2p2 − �k2 + p2 − q2�2��3−d�/4 . �6�

ck
�� denote the direct correlation functions. c is related to S

via the Ornstein-Zernike �OZ� equation,

�S−1�k
�� = ���/x� − nck

��. �7�

n is the total number of particles per volume and d
=2�d/2 /��d /2� is the well-known result for the surface of a
unit sphere in d dimensions. ��x� is the gamma function.

B. Definition of the model

The M-component MCT in d dimensions shall be applied
to binary hard “sphere” mixtures �HSMs� in d dimensions
consisting of big ��=b� and small ��=s� particles. Let R�

denote the radius of the species �. Three independent control
parameters are necessary to characterize the thermodynamic
state of a HSM. We choose them to be the total packing
fraction �=�s+�b with ��=nx��d /d�R�

d , the size ratio �
=Rs /Rb�1, and the particle number concentration xs of the
smaller particles.

For the following, we discretize the MCT equations, i.e., k
is discretized to a finite equally spaced grid of K points, k

= �ôd+ k̂��k, with k̂=0,1 , . . . ,K−1 and 0� ôd�1. The inte-
grals in Eq. �4� are then replaced by Riemann sums,

�
0




dp�
�k−p�

k+p

dq¯ � ��k�2�
p̂=0

K−1

�
q̂=�k̂−p̂�

min�K−1,k̂+p̂	

¯ , �8�

and Eq. �1� represents a finite number of coupled nonlinear
“integrodifferential” equations. We further restrict our nu-
merical studies to the cases d=2 and d=3. For the offset,
following previous works, we choose ô2=0.303 for d=2 �15�
and ô3=0.5 for d=3 �7�. The choice of K=250 and �k=0.3
turns out to be sufficiently accurate to avoid larger discreti-
zation effects.

For calculations with finite concentrations of both particle
species, the unit length shall be given by the diameter 2Rb of
the bigger particles, and the short-time diffusion coefficients
D�

0 shall be assumed to obey the Stokes-Einstein law. Fur-
ther, the unit of time is chosen such that D�

0 =0.01 / �2R��. For
the numerical solution of Eq. �1� we use the algorithm first
published in �16�. Our time grids consist of 256 points, as
initial step size we choose 10−8 time units.

For the discussion of the weak mixing limits �see below�
it is convenient to choose the diameters 2R� of the majority
particle species as unit length.

C. Static structure

Approximate closures of the OZ equation provide the
most powerful methods currently available for a fast calcu-
lation of the pair correlation functions from first principles
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�17�. The OZ equation for an arbitrary mixture is given by

h = c + ncxh, �9�

where xk
��=x���� and the hk

�� are the total correlation func-
tions. For our binary HSM model we use the PY approxima-
tion given by

h���r� = − 1, r � �R� + R�� ,

c���r� = 0, r � �R� + R�� . �10�

In odd dimensions the coupled Eqs. �9� and �10� can be
solved analytically �18�. In even dimensions numerical meth-
ods must be employed. Among the several existing algo-
rithms �19� we use the classical Lado algorithm �20� for sim-
plicity. In our numerical solution of the 2D system we use a
real space cutoff rmax=50 with 4000 grid points.

D. Glass transition lines

The nonergodicity parameters �NEPs� F= �Fk
��� are given

by F=limt→
 ��t�. For the discretized model described
above, the following statements can be proved �21�. Equa-
tion �1� has a unique solution. It is defined for all t�0 and is
completely monotone, �−� /�t�n��t��0. F�0 is �with re-
spect to �� the maximum real symmetric fixed point of the
nonlinear map,

I�X� = S − �S−1 + F�X,X��−1. �11�

Iterating Eq. �11� starting with X=S leads to a monotonically
decaying sequence converging toward F. Linearization of I
yields the positive definite linear map �stability matrix�,

C�Y� = 2�S − F�F�F,Y��S − F� , �12�

with C�Y��0 for all Y�0. From a physical point of view, it
is reasonable to assume that C is irreducible if F�0 �21�. C
has then a nondegenerate maximum eigenvalue 0�r�1
with a corresponding �right� eigenvector H�0. For any
other eigenvalue r̃ of C, �r̃�� �r� holds, and if �r̃�= �r�, then the
corresponding eigenvector cannot be positive definite.
Hence, possible MCT singularities are identified by r=1 and
belong to the class Al, l=2,3 , . . ., introduced by Arnol’d �22�.
The adjoint map Ĉ of C satisfies �Ĉ�A� �B�= �A �C�B�� for all

A, B. Its eigenvector Ĥ�0 is the left eigenvector of C cor-
responding to the eigenvalue r. These two eigenvectors are
determined uniquely by requiring the normalization

�Ĥ�H� = �Ĥ�H�S − F	−1H� = 1. �13�

For binary HSM models, higher order singularities may
occur for large size disparities where the packing contribu-
tions x̂�=�� /� of both components are of the same order
�23�. In the present paper, we restrict our discussion to the
generic �type-B� MCT bifurcations belonging to the class A2
where F jumps from 0 to Fc�0. Quantities taken at critical
points shall be indicated by a superscript c. The glass transi-
tion takes place at the critical surface �c�xs ,�� within the
three-dimensional �3D� physical parameter space �� ,xs ,��.
�c�xs ,�� fulfills �24�

�c�xs,�� = �c�1 − xs,1/�� . �14�

Equation �14� demonstrates that �c�xs ,�� for fixed � is not
symmetric with respect to the equimolar concentration xs
=1 /2. However, for xs=1 /2 and small disparity, i.e., �= �1
−���1, it follows from Eq. �14� that �c�1 /2,��
�2 in lead-
ing order in �. Accordingly, for the equimolar situation and
small disparity the influence of disparity is quadratic only.
�c�xs ,�� can be determined numerically by a simple bisec-
tion algorithm monitoring the NEPs.

E. Slope of a critical line

For a general model system with L external, i.e., physical
control parameters �� = ��1 , . . . ,�L�, the generic glass transi-
tion singularities form a �L−1�-dimensional hypersurface H.
Locally, this surface can be represented, e.g., as
�l

c��1 , . . . ,�l−1 ,�l+1 , . . . ,�L� for any l. For fixed �i, i� j, i� l,
�l

c��1 , . . . ,� j , . . . ,�l−1 ,�l+1 , . . . ,�L� describes a GTL which
is a function of � j. An expression for its slope
���l

c /�� j���1 , . . . ,� j , . . . ,�l−1 ,�l+1 , . . . ,�L� is obtained by use
of the separation parameter �. Let ��c�H be a critical point
and ��� =�� −��c. Then the separation parameter is a linear
function ������ in ��� �5�. ������=0 defines the tangent plane
of the hypersurface H at the critical point ��c. Then it is easy
to prove that

���l
c/�� j���1

c, . . . ,� j
c, . . . ,�l−1

c ,�l+1
c , . . . ,�L

c�

= − � ��/���� j�
��/����l�

�
���=0�

. �15�

The separation parameter ������ follows from

�̃���� = „Ĥc��Sc − Fc	Sc−1�SF�Fc,Fc��S − Fc�

− ScFc�Fc,Fc��Sc − Fc�	… �16�

by expanding around ��c up to linear order in ��� �5,25�. Re-
sult �15� demonstrates that the separation parameter besides
being a measure for the distance from the critical point ��c

also contains local information of a GTL.
Applied to a binary liquid, Eq. �15� yields

� ��c

�xs
�

�xs,��=�xs
c,�c�

= − � ��/���xs�
��/�����

�
���,�xs,���=0�

, �17�

where �� and all critical input parameters have to be con-
sidered as fixed constants when calculating the partial de-
rivatives. A similar expression follows for ���c /����xs
=xs

c ,�=�c�.
Let us further remark that the concept of introducing a

separation parameter is not restricted to MCT models. Thus,
Eq. �15� holds for any system which has at least two control
parameters and exhibits the generic A2 bifurcation scenario
�22�.

F. Weak mixing limit

One of the central aspects of our paper is to demonstrate
the predictive power of Eq. �17� for the limits xs=0 and xb
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=0. By performing these limits analytically, we obtain for-
mulas whose numerical evaluation is much less time con-
suming than the numerical procedure mentioned above, i.e.,
to determine the slope from �c�xs ,��. Note that the knowl-
edge of the initial slopes of the GTLs for both limits is al-
ready sufficient to estimate their qualitative behavior under
certain assumptions. The essential steps for the calculation of
the slope ��c /�xs are explained in the Appendix.

III. RESULTS AND DISCUSSION

A. Glass transition lines

Figure 1 shows normalized slopes of the GTLs at xs=0 as
functions of 1 /� for the binary 2D and 3D HSM models.
Because �=1 represents a one-component system, the slopes
have to be zero at this point. While the numerical results for
the 3D model clearly support this statement, the numerical
data for the 2D model at �=1 slightly deviate from zero �see
also Fig. 2�. This, however, is an artifact due to the numeri-

cally calculated static structure factors in two dimensions.
For the 3D model, we have used the analytical solution of
Eqs. �9� and �10� to calculate the static input for MCT which
has led to a better self-consistency at �=1 than for the 2D
model. For � close to unity, the slopes become negative
which means that the presence of a small concentration of
the smaller particles stabilizes the glass. After exhibiting a
minimum at �−, the slopes become zero again at �0 and re-
main positive for ���0. Here the presence of the smaller
particles stabilizes the liquid which is nothing but the well-
known plasticization effect. Upon further decreasing in �, the
slopes exhibit a maximum at �+ and indicate a monotonic
decay for asymptotically small �. For the 2D model, this
decay is more stretched than for the 3D case.

For the 3D model, we observe a continuous transition of
the tagged-particle NEPs �Fc,�1��k

ss �see Appendix, Sec. 3 c� to
zero by approaching ��1 /4 from above. This indicates a
delocalization transition of the smaller spheres in the glass
formed by the bigger ones �26–28�. Such a transition is
strongly influenced by a 1 /k2 divergence of the memory ker-
nel for the tagged-particle correlators at k=0 �29�. This sin-
gularity reflects the fact that, inside a fluid, the momentum of
a single tagged-particle is not conserved. Although the evalu-
ation of Eq. �17� at xs=0 requires �Fc,�1��k

ss as input, the
qualitative xs dependence of �c should not be influenced by
this problem. Nevertheless, we show the corresponding data
for 1 /��3.5 in Fig. 1 with open symbols. However, these
data show the same qualitative behavior as the corresponding
ones for the 2D model. For our choice of the lower cutoff for
k, the MCT model does not yield a delocalization transition
in two dimensions even if we use the PY result for Rs=0 as
static input. This, however, is an artifact due to the singular-
ity of the tagged-particle memory kernel at k=0. Again, the
qualitative xs dependence of �c should not be influenced.

Figure 2 shows normalized slopes of the GTLs at xb=0.
For � close to unity, the presence of a small concentration of
the bigger particles leads to a stabilization of the glass. The
slope vanishes at �0���0. A strongly increasing plasticization
effect occurs for smaller �.

Apart from the problems discussed above, the results
shown in Figs. 1 and 2 allow us to predict the shape of the
GTLs. Both xs=0 and xb=0 define one-component models
with the same critical packing fraction �0

c. Hence the GTLs
show a single minimum for �0����1, exhibit a minimum
followed by a maximum �S shape� for intermediate �0��
��0�, and show a single maximum for smaller ���0. Here
we assumed that two or more minima �maxima� do not oc-
cur. Figure 3�a� shows the relative variation ��c−�0

c� /�0
c of

the GTLs for the binary 2D HSM model. Results of Götze
and Voigtmann for the 3D model �7� are shown in Fig. 3�b�.
The � dependence of these GTLs agrees with the � depen-
dence predicted from the slopes at xs=0 and xb=0. Particu-
larly, the S shapes of the GTLs for �0����0� are repro-
duced.

All our results predict the following trend: compared to
the 3D model, the stabilization of the glass is much more
pronounced in the 2D model where the less pronounced plas-
ticization effect only sets in at larger size disparities. The
maximum relative decrease in �c occurring at �0.7 in two
dimensions �see Fig. 3�a�� is about five times larger than the
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1/δ

-0.03

-0.02

-0.01

0

0.01

0.02

(∂
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1 1.1 1.2 1.4 1.5 1.61/δ
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-0.01

0

0.01
(∂

ϕc /∂
x s)
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ϕc )

[x
s=

0]
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3D

FIG. 1. �Color online� Normalized slopes of the GTLs at xs=0
for the binary HSM models in two dimensions and three dimen-
sions. It is �0

c 0.6914 for d=2 and 0.5159 for d=3. For 1 /�
�3.5 in the 3D model, the tagged-particle NEPs indicate a delocal-
ization transition of the smaller spheres. This regime is indicated by
open symbols �see text�.
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FIG. 2. �Color online� Slopes of the GTLs at xb=0.
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maximum downshift of �c in three dimensions which occurs
at �0.8 �see Fig. 3�b� and Fig. 2 in Ref. �7��. Qualitatively,
the binary hard disk liquid exhibits the same two mixing
effects discussed in the introduction for the hard sphere liq-
uid.

A finer resolution of the slope sc�xs ,������c /�xs��xs ,��
in Fig. 1 for � close to unity �see inset� shows that
��sc /����xs=0,�=1�=0. The numerical data for the 3D
model show this behavior more clearly than the correspond-
ing ones for the 2D model for technical reasons mentioned
above. The resolution of Fig. 2 already exhibits that
��sc /����xs=1,�=1�=0. Therefore, �c�xs ,�� at xs=0 and xs
=1 is quadratic in �= �1−�� for � close to unity. Since Eq.
�14� has led to the same � dependence at xs=1 /2, we con-
jecture that

�c�xs,�� 
 �1 − ��2 �18�

for all xs and small size disparity. A numerical check for, e.g.,
xs=1 /4 has confirmed the validity of Eq. �18� for d=2 and
d=3. Equations �14� and �18� imply

�c�xs,��  �c�1 − xs,�� . �19�

Consequently, the GTLs become symmetric in xs with re-
spect to xs=1 /2 in the limit of small size disparity. Then the
maximum enhancement of glass formation occurs at equimo-
lar concentration xs=1 /2, excluding again the occurrence of
more than one minimum.

Okubo and Odagaki �30� numerically calculated random
close packing values �31� �rcp of binary hard disks by use of
a so-called infinitesimal gravity protocol. Figure 4 presents
their results for ��rcp− �̃0

rcp� / �̃0
rcp. �̃0

rcp0.8139 is close but
not identical to the averaged value �0

rcp0.82 for monodis-
perse hard disks. Despite the large numerical uncertainty at
xs=0, xs=1, and �=1 �this might result from the fact that for
monodisperse hard disks the applied procedure tends to build
up locally ordered structures�, the data show a striking simi-

larity to ��c−�0
c� /�0

c �Fig. 3�a��. The change from the single
minimum shape to an S shape and a maximum shape by
decreasing � is clearly reproduced by the random close pack-
ing result.

B. Mixing scenarios

In this section we will demonstrate that the mixing sce-
narios presented in Ref. �7� for binary hard spheres are also
observable for binary hard disks. For this purpose, we follow
Götze and Voigtmann �7� and choose �, �, and the packing
contribution of the smaller particles x̂s=�s /� as independent
control parameters. In d dimensions, we have

xs =
x̂s/�d

1 + x̂s�1/�d − 1�
. �20�

As a direct analogon to Fig. 1 in Ref. �7�, Fig. 5�a� shows
GTLs for the binary HSM model in two dimensions, plotted
as functions of x̂s for three representative values for �. The
GTL for �=5 /7 shows a single clearly pronounced mini-
mum, the line for �=1 /2 is S shaped, and the GTL for �
=1 /3 exhibits a single maximum.

For both the hard sphere and the hard disk system the
relative variation in �c with concentration is of the order of
1% or less �see Figs. 3 and 5�a��. This can neither be ob-
served by experiments nor by simulations. As already
stressed in Ref. �7�, the variation in �c with, e.g., x̂s may be
reflected by a strong variation in the �-relaxation time
��rel�k

��, i.e., a variation in the characteristic time scale for
the final decay of 	k

���t� to zero in the liquid phase. If � is
fixed below but sufficiently close to �c�x̂s ,��, i.e., if � is
fixed such that there exists an interval in the �x̂s ,�� plane
such that 0��c�x̂s ,��−��1 is satisfied for all �x̂s ,�� within
that interval, then the �-relaxation time ��rel�k

��
��c�x̂s ,��
−��−��x̂s,�� is extremely sensitive to the variation in �x̂s ,��
within that interval. Figure 5�b� shows �-relaxation times
defined by 	k

bb���rel�k
bb�=0.1�Fc�k

bb for the un-normalized
correlators of the big particles at k=5.1909 for fixed �
=5 /7, 1/2 and fixed �=0.686 below but close to the corre-

0 0.2 0.4 0.6 0.8 1
x

s

0

0.01

0.02

0.03

(ϕ
c -

ϕ 0c )
/ϕ

0c

δ=0.9
δ=0.7
δ=0.5
δ=0.3

0 0.2 0.4 0.8 1x
s

0

0.015
(ϕ

c -
ϕ 0c )

/ϕ
0c δ=0.8

δ=0.7
δ=0.6

(a)

(b)

2D

3D

FIG. 3. �Color online� �a� Relative variation of the glass transi-
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squares calculated with K=400 grid points �instead of K=250� give
an estimate for the error due to the high wave number cutoff. �b�
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sponding GTLs for the binary HSM model in two dimen-
sions for different packing contributions x̂s. The qualitative x̂s
dependencies of the corresponding GTLs in Fig. 5�a� are
clearly reflected by the x̂s dependencies of the �-relaxation
times. ��rel�k

bb shows a single maximum for �=5 /7 and is S
shaped for �=1 /2. For �=5 /7, ��rel�k

bb varies by more than
three decades. Figure 5�c� shows ��rel�k

bb at k=5.1909 for
fixed �=1 /3 and fixed �=0.691 below but close to the cor-
responding GTL for the binary HSM model in two dimen-
sions. The qualitative x̂s dependence of the corresponding
GTL in Fig. 5�a� is reflected by a single minimum in ��rel�k

bb.
Note that for this � we had to choose a slightly larger value
for � than for the two other examples shown in Fig. 5�b� in
order to clearly observe this effect. In contrast to this, Fig. 11
in Ref. �7� exhibits all three scenarios for one common �. In
our 2D model, however, the minimum of �c occurring for
�=5 /7 is more strongly pronounced than the corresponding
one for �=0.8 in three dimensions shown in Fig. 1 in Ref.
�7�. This fact makes the choice of a common � for all three
considered values of � for the 2D model difficult.

Let us also discuss some representative correlators in
more detail. As a direct analogon to the upper panel of Fig. 8
in Ref. �7�, Fig. 6 shows normalized correlators 	k

bb�t� /Sk
bb of

the big particles for the binary HSM model in two dimen-
sions at fixed �=0.686, �=5 /7, and k=5.1909 for different
packing contributions x̂s of the smaller disks. Let ��̃rel�k

bb be
the characteristic time scale specified by 90% of the decay
from the normalized plateau value �Fc�k

bb / �Sc�k
bb to zero. For

the chosen value of � the corresponding GTL shows a single
minimum shape �see Fig. 5�a��. Hence, starting from the al-
most monodisperse system at x̂s=0.01 and increasing the
packing contribution of the smaller disks to x̂s=0.3 lead to a
decrease in the distance �c�x̂s ,��−� from the GTL. This fact
is reflected by an increase in ��̃rel�k

bb by more than three
decades �see the open diamonds in Fig. 6�.

An analogous scenario to the upper panel of Fig. 9 in Ref.
�7� is presented in Fig. 7. It shows normalized correlators
	k

bb�t� /Sk
bb of the big particles for the binary HSM model in

two dimensions at fixed �=0.691, �=1 /3, and k=5.1909 for
different packing contributions of the smaller disks. For the �
chosen here the corresponding GTL shows a single maxi-
mum shape �see Fig. 5�a��. Hence, starting at x̂s=0.01 and
increasing the packing contribution of the smaller disks to
x̂s=0.3 lead to an increase in the distance �c�x̂s ,��−� from
the GTL. As a result, ��̃rel�k

bb decreases by about two decades
�see the open diamonds in Fig. 7�.

Two additional mixing effects �briefly mentioned in Sec.
I� were reported in Ref. �7� for the 3D model. The first of
these effects is the increase in the normalized critical NEPs
�Debye-Waller factors� �Fc�k

�� / �Sc�k
�� upon increasing x̂s for

almost all k �related to an increase in the plateau values of
the correlation functions for intermediate times�. The origin
of this effect is explained in great detail in Ref. �7�. The 2D
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model shows similar behavior. Here we restrict ourselves to
a representative example. Figure 8 shows normalized critical
NEPs �Fc�k

bb / �Sc�k
bb for the big particles at �=1 /2 for the

binary HSM model in two dimensions. The data for x̂s=0
represent the Debye-Waller factors of a monodisperse system
consisting of disks with diameter one, while the result for
x̂s=1 corresponds to the critical tagged-particle NEPs
�Lamb-Mößbauer factors� of a single disk of diameter one
inserted into a monodisperse system consisting of disks with
diameter ��1. These Lamb-Mößbauer factors for all k are
larger than the corresponding Debye-Waller factors of the
system of monodisperse disks with diameter one. Provided
that �Fc�k

bb / �Sc�k
bb varies smoothly for all 0� x̂s�1 �i.e.,

there are no multiple glassy states for the considered value of
��, one obtains an increase in the Debye-Waller factors upon
increasing x̂s as an overall trend �see also the filled diamonds
in Figs. 6 and 7�.

The second remaining mixing effect is the slowing down
of the initial part of the relaxation toward the plateau values
for the correlators of the big particles in the sense that
	k

bb�t� /Sk
bb versus log10�t� becomes flatter upon increasing x̂s.

This effect is clearly visible in Figs. 6 and 7. Götze and
Voigtmann �7� concluded that the change in the short-time
dynamics upon increasing x̂s is not sufficient to explain the
observed effect. Figure 7 supports this statement. The shown
short-time asymptotes resulting from Eq. �2� for x̂s=0.01 and
x̂s=0.3 fall already at log10�t��−1 significantly below the
corresponding correlators. Thus, the enormous flattening of
the curves in the region 0� log10�t��2 cannot be simply
explained by the slowing down of the diffusion at short
times.

Let us conclude at this point that we have found the same
four mixing effects for binary hard disks as have been re-
ported for binary hard spheres in Ref. �7�. The subtle sce-
nario in Fig. 7 is the result of an interplay of three of these
mixing effects. The increase in x̂s leads first to both an in-
crease in the plateau values of the correlators at intermediate
times and a slowing down of the initial part of the decay
toward these plateaus. However, the increase in x̂s also leads
to a decrease in the �-relaxation times, i.e., an enhancement
of the final decay to zero, and thus to a crossing of the
correlators.

IV. SUMMARY AND CONCLUSIONS

In the present paper we have studied the influence of com-
position changes on the glass transition for binary hard disk
and hard sphere mixtures in the framework of MCT.

By deriving Eq. �15�, we have shown that the well-known
separation parameter not only describes the scaling of the
NEPs in the glass �5,32� but also describes the local variation
of the GTLs to linear order. For low concentration limits of
one particle species we have evaluated the slopes of the
GTLs �Eq. �17�� by using a perturbation ansatz. With this we
have introduced a method which allows a fast prediction of
some qualitative properties of the GTLs. Note that this
method can be applied to any MCT model with more than
one control parameter. For instance, a similar analysis should
be possible for hard spheres with attractive potentials in the
limit of vanishing attraction strength �33� or, equivalently,
for temperature going to infinity. More generally, Eq. �15�
holds for any system which has at least two control param-
eters and exhibits the generic A2 bifurcation scenario �22�.

The direct comparison of the models in two dimensions
and three dimensions shows similar qualitative behavior. Par-
ticularly, the same four mixing effects have been found as for
hard spheres �7�. However, we have also found some differ-
ences. The main difference is the fact that the extension of
the glass regime due to mixing for size ratios close to unity is
more strongly pronounced in two dimensions than in three
dimensions.

For small size disparity we have presented analytical and
numerical evidence that the stabilization of the glassy state is
quadratic in �1−�� and that the GTLs are almost symmetric
with respect to their equimolar concentration xs=1 /2. At this
concentration the stabilization is maximal. These properties
have not been noticed before.

Finally, we have shown that the qualitative �xs ,�� depen-
dence of �c for some representative values of � is identical to
that of the random close packing �rcp. This is particularly
true for the S-shape dependence for intermediate values for
�. The maximum shape variation in �c which implies stabi-
lization of the liquid state and which has been related to
entropic forces �7,33–35� exists also for �rcp for smaller �.
Since the random close packing procedure in Ref. �30� is a
nonequilibrium process which maximizes the density locally,
it is not obvious that the stabilization effect is of entropic
origin at least for � not too small.

At this point we should also remember that �rcp is not
uniquely defined. For instance, a subsequent shaking of the
configurations produced by the infinitesimal gravity protocol
used in Ref. �30� would typically lead to random structures at
even higher densities. Hence, one may ask whether the quali-
tative trends shown in Fig. 4 are reproducible by using dif-
ferent procedures for calculating �rcp. A different approach is
the investigation of jamming transitions of hard disks or hard
spheres. Simulations on frictionless systems of repulsive
spherical particles have given evidence for a sharp disconti-
nuity of the mean contact number Z at a critical volume
fraction � jam �36–39�. These results are supported by experi-
ments on binary photoelastic disks with ��0.86 and xs
=0.8 �40�. Recently, � jam has been determined by Stärk et al.
�41� as a function of xs for different values for � both by
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FIG. 8. �Color online� Normalized critical NEPs for the big
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experiments on photoelastic disks and by corresponding
computer simulations. Their results clearly support all the
qualitative features presented in Fig. 4, whereby supporting
the results shown in Fig. 3.

Let us conclude with some open questions which are
worth to be investigated in the future. For the 3D model,
higher order singularities �connected to the existence of mul-
tiple glassy sates� occur below ��0.4 �23�. The question,
whether such transitions also exist in two dimensions, re-
quires a more detailed numerical study. The consistency of
our MCT results with the corresponding random close pack-
ing data supports the quality of MCT in two dimensions.
However, also a quantitative comparison of the dynamical
MCT results with molecular dynamics simulations is neces-
sary. A further step toward reality will be the study of MCT
for binary disks including dipolar interactions for which de-
tailed experimental studies exist �14�.
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APPENDIX: EVALUATION OF THE SLOPE IN THE
WEAK MIXING LIMIT

Here we will describe how to evaluate the slope of the
GTL �Eq. �17�� at xs=0. The procedure for xb=0 is the same.
The corresponding formulas are obtained by interchanging
the particle indices b↔s. Let us further remark that the ex-
plicit specialization on a certain model system occurs only
on the level of the static input for MCT. Thus, the MCT
formulas presented below can be directly translated and ap-
plied to arbitrary binary mixtures such as soft sphere mix-
tures or binary disks including dipolar interactions �14�.

1. Rewriting the mode coupling functional

For the following, it is convenient to rewrite the mode
coupling functional as

F = nx−1F̂x−1, �A1�

where the elements of the matrix x are defined by xk
��

=x����. As can be read off from Eqs. �4�–�6�, F̂ has a bi-
linear functional dependence on the matrix c of direct corre-
lation functions and shows no further explicit dependence on

the control parameters. F̂ can be considered as a special case

of a more general functional F̃,

F̂�X,Y� = F̃�c,c;X,Y� , �A2�

F̃k
���a,b;X,Y� =

d−1

�4��d �
��,��,��,��

�
0




dp�
�k−p�

k+p

dq

�Ṽk;p,q
��;����,�����a,b�Xp

����Yq
����, �A3�

Ṽk;p,q
��;����,�����a,b� =

pq

kd+2 ṽkpq
������a�ṽkpq

������b� , �A4�

ṽkpq
����z� =

�k2 + p2 − q2�zp
����� + �k2 − p2 + q2�zq

�����

�4k2p2 − �k2 + p2 − q2�2��3−d�/4 .

�A5�

Hence, for fixed X and Y and some arbitrary external control
parameter �i we can write

��F̂/��i��X,Y� = Ĝ�X,Y� , �A6�

Ĝ�X,Y� = F̃��c/��i,c;X,Y� + F̃�c,�c/��i;X,Y� . �A7�

2. Derivatives of the separation parameter

a. General case

For a general model system, the calculation of the slope
of an arbitrary GTL �Eq. �15�� requires the calculation of a
pair of derivatives of the separation parameter of the form
�� /����i� ����=0�. Since � follows from �̃ �Eq. �16�� by linear-
ization around ��c, we can write

��/����i�����=0� = ��̃/��i���=��c. �A8�

Only, those quantities on the right-hand side �rhs� of Eq. �16�
without the superscript c are differentiated. Then, all quanti-
ties in the resulting formula have to be taken at the critical
point ��c. For the following, we drop the superscript c for
convenience. With Eqs. �16�, �A6�, and �A8� we obtain ex-
plicitly

��/����i�����=0�

= n−1��n/��i��Ĥ��S − F	nx−1F̂�F,F�x−1�S − F	�

+ �Ĥ��S − F	nx−1Ĝ�F,F�x−1�S − F	�

+ �Ĥ��S − F	S−1��S/��i	nx−1F̂�F,F�x−1�S − F	�

+ �Ĥ��S − F	nx−1F̂�F,F�x−1��S/��i	�

+ �Ĥ��S − F	n��x−1/��i	F̂�F,F�x−1�S − F	�

+ �Ĥ��S − F	nx−1F̂�F,F���x−1/��i	�S − F	� . �A9�

Note that for a one-component model we have x=x−1=1 and
thus �x−1 /��i=0. Let us further remark that the first scalar
product on the rhs of Eq. �A9� is nothing but the well-known

exponent parameter �= �Ĥ � �S−F	F�F ,F��S−F	�.

b. Weak mixing limit

We specialize Eq. �A9� to evaluate Eq. �17� at xs=0. Let
us start with summarizing some important properties of S, F,

F̂, and Ĝ. By definition, for xs→0 the elements of S and F
satisfy

Sk
�� = O�xs� if ��,�� � �b,b� ,
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Fk
�� = O�xs� if ��,�� � �b,b� . �A10�

Due to the Kronecker deltas is Eq. �A5�, we also have

F̂k
���F,F� = O�xs� if ��,�� � �b,b� ,

Ĝk
���F,F� = O�xs� if ��,�� � �b,b� . �A11�

For the following, we assume Taylor expansions for n, c, S,

F, H, and Ĥ in powers of xs around xs=0 of the form

Z = Z�0� + xsZ
�1� + O�xs

2� . �A12�

Equation �A10� implies

�S�0��k
�� = 0 if ��,�� � �b,b� ,

�F�0��k
�� = 0 if ��,�� � �b,b� . �A13�

The Taylor expansions of F̂�F ,F� and Ĝ�F ,F� needed be-
low read explicitly

F̂�F,F� = F̂�0��F�0�,F�0�� + xsĜ�0��F�0�,F�0��

+ 2xsF̂�0��F�0�,F�1�� + O�xs
2� , �A14�

Ĝ�F,F� = Ĝ�0��F�0�,F�0�� + O�xs� , �A15�

where the leading order functionals are given by

F̂�0��X,Y� = F̃�c�0�,c�0�;X,Y� , �A16�

Ĝ�0��X,Y� = F̃�c�1�,c�0�;X,Y� + F̃�c�0�,c�1�;X,Y� .

�A17�

Equation �A13� and the Kronecker deltas is Eq. �A5� imply

�F̂�0��F�0�,F�0���k
�� = 0 if ��,�� � �b,b� ,

�Ĝ�0��F�0�,F�0���k
�� = 0 if ��,�� � �b,b� . �A18�

A further important implication is the fact that

�F̂�0��F�0� ,F�1���k
�� is not dependent on �F�1��k

bb if �� ,��
� �b ,b�.

Now we consider the numerator in Eq. �17�. It follows
from Eq. �A9� by choosing �i=xs. Let us focus on the scalar
product in the first term on the rhs of Eq. �A9�. The factors,

�S−F	x−1, n, F̂�F ,F�, and x−1�S−F	 have all well defined
limits for xs→0 which can be calculated independently.
Hence, the limit of the second argument of the considered
scalar product also exists. Thus, the xs→0 limit of the first

argument of the scalar product, namely, that of Ĥ, can be

performed independently with Ĥ�0� as a result. Because of
Eqs. �A14� and �A18�, the final result for the xs→0 limit of
the first term on the rhs of Eq. �A9� depends only on the
matrix elements with indices �� ,��= �b ,b�. We can write the
result explicitly as �n�1� /n�0�	��0� where

��0� = n�0��
k

�Ĥ�0��k
bb��S�0��k

bb − �F�0��k
bb	

��F̂�0��F�0�,F�0���k
bb��S�0��k

bb − �F�0��k
bb	 �A19�

is nothing but the well-known exponent parameter of the
corresponding monodisperse MCT model �5,32�. The second
term on the rhs of Eq. �A9� can be discussed similarly; here
Eqs. �A15� and �A18� lead to

��0� = n�0��
k

�Ĥ�0��k
bb��S�0��k

bb − �F�0��k
bb	

��Ĝ�0��F�0�,F�0���k
bb��S�0��k

bb − �F�0��k
bb	 . �A20�

The treatment of the remaining terms in Eq. �A9� is some-
what more tedious. For this purpose we write the matrix
products occurring as second arguments of the scalar prod-
ucts explicitly in components. By using Eqs. �A10� and
�A11� we realize that all the inverse powers of xs stemming
from x−1 and its derivative with respect to xs can be compen-
sated by other factors which are of the order xs. Hence, the
xs→0 limits for all matrix products occurring as second ar-
guments of the scalar products exist. Thus, for each scalar

product, the xs→0 limit of Ĥ can be performed indepen-

dently yielding Ĥ�0�. The final result for the numerator in Eq.
�17� evaluated at xs=0 can be written as

��̃/�xs�xs=0 = �2 + n�1�/n�0�	��0� + ��0� + �Ĥ�0���Â�0� + B̂�0�	� ,

�A21�

�Â�0��k
�� = n�0���S�0��k

�b − �F�0��k
�b	�F̂�0��F�0�,F�0���k

bb�S�1��k
b�

+ 2n�0���S�0��k
�b − �F�0��k

�b	�F̂�0�

��F�0�,F�1���k
bs�F�1��k

s� − 2n�0���S�1��k
�s − �F�1��k

�s	

��F̂�0��F�0�,F�1���k
sb��S�0��k

b� − �F�0��k
b�	

− 4n�0���S�1��k
�s − �F�1��k

�s	

��F̂�0��F�0�,F�1���k
ss��S�1��k

s� − �F�1��k
s�	 + 2n�0�

���S�1��k
�s − �F�1��k

�s	�F̂�0��F�0�,F�1���k
ss�S�1��k

s�,

�A22�

B̂�0� = K̂�0�L̂�0�, �A23�

�K̂�0��k
bb = 1 − �F�0��k

bb/�S�0��k
bb,

�K̂�0��k
bs = �F�0��k

bb�S�1��k
bs/�S�0��k

bb − �F�1��k
bs,

�K̂�0��k
sb = 0,

�K̂�0��k
ss = 1 − �F�1��k

ss, �A24�
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�L̂�0��k
�� = n�0��S�1��k

�b�F̂�0��F�0�,F�0���k
bb

���S�0��k
b� − �F�0��k

b�	 + 2n�0��S�1��k
�s�F̂�0�

��F�0�,F�1���k
sb��S�0��k

b� − �F�0��k
b�	

+ 2n�0��S�1��k
�s�F̂�0��F�0�,F�1���k

ss

���S�1��k
s� − �F�1��k

s�	 . �A25�

Due to the statement below Eq. �A18�, the final result �Eq.
�A21�� does not depend on �F�1��k

bb. The term 2��0� results
from the bb elements to the last two scalar products in Eq.

�A9�. The matrix B̂�0� represents the contribution of the third

term in Eq. �A9� where K̂�0� is nothing but the xs→0 limit of

�S−F	S−1, while L̂�0� is the corresponding limit for the ex-

pression ��S /�xs	nx−1F̂�F ,F�x−1�S−F	. All remaining

quantities are summarized to the matrix Â�0�.
Let us now consider the denominator in Eq. �17� which

follows from Eq. �A9� by choosing �i=�. Since Eqs. �A10�
and �A11� remain valid if one replaces the corresponding
quantities by their derivatives with respect to � and since
�x−1 /��=0, the final result depends only on the bb-matrix
elements. Thus, the denominator in Eq. �17� taken at xs=0
follows directly from the separation parameter of the mono-
disperse system. It is a positive constant.

3. Slope of a critical line

The explicit results above allow us to define a procedure
for the calculation of the slope of a GTL at xs=0. It consists
of five steps.

a. Calculation of the critical point

The first step is the determination of the critical packing
fraction �0

c and the corresponding NEPs �Fc,�0��k
bb by using

the corresponding one-component model of big particles. In
the following, all quantities have to be taken at �=�0

c, the
critical packing fraction of the one-component system. The
denominator in Eq. �17� taken at xs=0 also follows directly
from the separation parameter of the monodisperse system. It
is a positive constant which we calculate by numerical dif-
ferentiation for simplicity.

b. Calculation of the static structure

S�0� and S�1� entering into ��̃ /�xs �xs=0 trough Eqs.
�A19�–�A25� can be easily determined from c�0� and c�1� by
using Eq. �7�. The result reads

�S�0��k
bb = 1/�1 − n�0��c�0��k

bb	 ,

�S�0��k
bs = 0,

�S�0��k
ss = 0, �A26�

�S�1��k
ss = 1,

�S�1��k
bs = n�0��S�0��k

bb�c�0��k
bs,

�S�1��k
bb = ��S�0��k

bb	2�n�0���c�1��k
bb + �c�0��k

ss�

− �n�0� − n�1���c�0��k
bb − �n�0��2��c�0��k

bb�c�0��k
ss

− �c�0��k
bs�c�0��k

sb�	 − �S�0��k
bb�1 + n�0��c�0��k

ss	 .

�A27�

Hence, in the second step we have to determine c�0� and c�1�.
Substituting n=n�0�+xsn

�1�+¯, c=c�0�+xsc
�1�+¯, h is

analogous, and x=x�0�+xsx
�1� into Eqs. �9� and �10� leads to

the equations for c�n� and h�n� which have to be solved recur-
sively. For n=0 and n=1, they read

h�0� = c�0� + n�0�c�0�x�0�h�0� �A28�

with the zeroth-order PY closure,

�h�0�����r� = − 1, r � �R� + R�� ,

�c�0�����r� = 0, r � �R� + R�� , �A29�

and

h�1� = c�1� + n�1�c�0�x�0�h�0� + n�0��c�1�x�0�h�0� + c�0�x�1�h�0�

+ c�0�x�0�h�1�	 �A30�

with the first-order PY closure,

�h�1�����r� = 0, r � �R� + R�� ,

�c�1�����r� = 0, r � �R� + R�� . �A31�

Furthermore, we have �x�0��k
bb=1, �x�1��k

bb=−1, and �x�1��k
ss

=1, all other components are zero, and n�0� and n�1� are given
by

n�0� = ��d�/�dRb
d� ,

n�1� = n�0��1 − �Rs/Rb�d� . �A32�

Note that Eqs. �A29�, �A31�, and �A32� are the only explic-
itly model dependent equations. Hence, the procedure can be
easily extended for both to arbitrary binary mixtures and to
closure relations different from PY. Let us further remark
that �c�0��k

bb and �h�0��k
bb are nothing but the direct and total

correlations functions for the one-component system of big
particles.

c. Calculation of the critical nonergodicity parameters

Beside �F�0��k
bb, the evaluation Eqs. �A19�–�A25� requires

also �F�1��k
bs and �F�1��k

ss as inputs. It is straightforward to
derive the equations for these quantities from the fixed point
equation F=I�F� following from Eq. �11� by considering
the limit xs→0. We obtain

�F�1��k
ss = 1 − �1 + 2n�0��F̂�0��F�0�,F�1���k

ss	−1, �A33�

�F�1��k
bs = 2n�0��S�1��k

bs�F̂�0��F�0�,F�1���k
ss�1 − �F�1��k

ss	

+ 2n�0��S�0��k
bb�F̂�0��F�0�,F�1���k

bs�1 − �F�1��k
ss	

+ n�0��S�0��k
bb�F̂�0��F�0�,F�0���k

bb��S�1��k
bs − �F�1��k

bs	 .

�A34�
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Since �F�0��k
bb have already been determined in the first step,

Eq. �A33� allows us to calculate �F�1��k
ss. The rhs of Eq.

�A33� does neither depend on �F�1��k
bs nor on �F�1��k

bb. The
�F�1��k

ss are nothing but the tagged-particle NEPs for a single
small particle in the fluid of the big particles. Finally, Eq.
�A34� allows us to calculate �F�1��k

bs since it is not dependent
on �F�1��k

bb due to the statement below Eq. �A18�.

d. Calculation of the critical eigenvectors

The evaluation Eqs. �A19�–�A25� requires the zeroth-

order left eigenvector Ĥ�0� as last input. For its unique deter-
mination, also the zeroth-order right eigenvector H�0� is
needed. For xs→0, Eq. �12� reduces to

C�0��Y� = 2n�0�M̂�0�F̂�0��F�0�,Y�N̂�0�, �A35�

�M̂�0��k
bb = �S�0��k

bb − �F�0��k
bb,

�M̂�0��k
bs = �S�1��k

bs − �F�1��k
bs,

�M̂�0��k
sb = 0,

�M̂�0��k
ss = 1 − �F�1��k

ss, �A36�

�N̂�0��k
bb = �S�0��k

bb − �F�0��k
bb,

�N̂�0��k
bs = 0,

�N̂�0��k
sb = �S�1��k

sb − �F�1��k
sb,

�N̂�0��k
ss = 1 − �F�1��k

ss. �A37�

Now, C�0� and the corresponding adjoint map Ĉ�0� allow us to

calculate the eigenvectors H�0� and Ĥ�0� obeying the normal-
ization

�
k

�Ĥ�0��k
bb�H�0��k

bb = 1, �A38�

�
k

�Ĥ�0��k
bb��H�0��k

bb	2/��S�0��k
bb − �F�0��k

bb	 = 1. �A39�

While for H�0� only the bb elements are nonvanishing, Ĥ�0�

has nontrivial contributions for all particle indices. �H�0��k
bb

and �Ĥ�0��k
bb are the eigenvectors for the one-component

model of big particles.

e. Calculation of the slope

Now, we have determined all quantities for the evaluation
of Eqs. �A19�–�A25� and are able to calculate the slope of
the GTL by using Eqs. �17� and �A8�.
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